References
[1]
M.
Perugini, M. Gallucci, G. Costantini, Safeguard power as a protection
against imprecise power estimates, Perspectives on Psychological Science
9 (2014) 319–332. https://doi.org/10.1177/1745691614528519.
[2]
E.
Clarke, S. Sherrill-Mix, Ggbeeswarm: Categorical scatter (violin point)
plots, 2017. https://CRAN.R-project.org/package=ggbeeswarm.
[3]
Y.
Xie, Dynamic documents with R and knitr, 2nd ed., Chapman;
Hall/CRC, Boca Raton, Florida, 2015. http://yihui.org/knitr/.
[4]
M.F.W. Festing, Randomized
Block Experimental Designs Can Increase the Power and Reproducibility of
Laboratory Animal Experiments, ILAR Journal 55 (2014) 472–476.
https://doi.org/10.1093/ilar/ilu045.
[5]
M.S. Ben-Shachar, D. Lüdecke, D. Makowski,
effectsize: Estimation of effect size
indices and standardized parameters, Journal of Open Source Software 5
(2020) 2815. https://doi.org/10.21105/joss.02815.
[6]
D.
Lüdecke, M.S. Ben-Shachar, I. Patil, D. Makowski, Parameters:
Extracting, computing and exploring the parameters of statistical models
using R., Journal of Open Source Software 5 (2020) 2445.
https://doi.org/10.21105/joss.02445.
[7]
P.
Green, C.J. MacLeod, Simr: An r package for power analysis of
generalised linear mixed models by simulation, Methods in Ecology and
Evolution 7 (2016) 493–498. https://doi.org/10.1111/2041-210X.12504.
[8]
C.O. Wilke, Cowplot: Streamlined plot theme and
plot annotations for ’ggplot2’, 2020. https://CRAN.R-project.org/package=cowplot.
[9]
S.
Champely, Pwr: Basic functions for power analysis, 2020. https://CRAN.R-project.org/package=pwr.
[10]
Y.
Xie, Bookdown: Authoring books and technical documents with r markdown,
2020. https://github.com/rstudio/bookdown.
[11]
J.
Fox, S. Weisberg, B. Price, Car: Companion to applied regression, 2020.
https://CRAN.R-project.org/package=car.
[12]
R.
Lenth, Emmeans: Estimated marginal means, aka least-squares means, 2020.
https://github.com/rvlenth/emmeans.
[13]
H.
Wickham, W. Chang, L. Henry, T.L. Pedersen, K. Takahashi, C. Wilke, K.
Woo, H. Yutani, D. Dunnington, ggplot2: Create elegant data
visualisations using the grammar of graphics, 2020. https://CRAN.R-project.org/package=ggplot2.
[14]
K.
Goode, K. Rey, ggResidpanel: Panels and interactive versions of
diagnostic plots using ggplot2, 2019. https://goodekat.github.io/ggResidpanel/.
[15]
D.
Bates, M. Maechler, B. Bolker, S. Walker, lme4: Linear mixed-effects
models using eigen and S4, 2020. https://github.com/lme4/lme4/.
[16]
A.
Kuznetsova, P. Bruun Brockhoff, R. Haubo Bojesen Christensen, lmerTest:
Tests in linear mixed effects models, 2020. https://github.com/runehaubo/lmerTestR.
[17]
H.
Wickham, Tidyr: Tidy messy data, 2020. https://CRAN.R-project.org/package=tidyr.
[18]
A.C. Davison, D.V. Hinkley, Bootstrap methods
and their applications, Cambridge University Press, Cambridge, 1997. http://statwww.epfl.ch/davison/BMA/.